Stronger Baselines for Evaluating Deep
Reinforcement Learning in Chip Placement

Abstract

Deep Reinforcement Learning (DRL) has demonstrated stunning success in game-
playing and several applied optimization problems. Improving chip designs is an
attractive next application, as illustrated by a recently proposed DRL technique
for chip layout optimization based on EdgeGNN. To evaluate this technique, we
develop stronger baselines by enhancing established techniques. Compared to the
DRL implementation reported earlier, our stronger baselines produce consistently
superior design layouts both on the chip designs used in the DRL paper and on
public benchmarks. We also produce competitive layouts with computational
resources smaller by orders of magnitude. Ablation studies help explain these
wins and point to weaknesses in how DRL is applied. Furthermore, our stronger
baselines and our empirical results suggest that the work of human chip designers
cannot serve as a strong baseline in scientific settings.

1 Introduction

Deep RL and Electronic Design Automation. The revolutionary improvements brought about by
deep learning (DL) methods in machine perception and language tasks, and by deep reinforcement
learning (DRL) methods in beating the best human players in games such as Go [28], Shogi, and
Chess [27] have led to immense interest in applying deep learning to other challenging domains.
One such domain is electronic design automation (EDA), the field that is concerned with developing
silicon compilers, software tools that are used to design the integrated circuits which underpin much
of modern life. Although there is a long history of applying Al and machine-learning techniques in
EDA, only recently has revolutionary success—in the sense of an EDA system being “superhuman”
at solving a placement problem—been claimed in a scientific setting [24]. This work, published in
the prestigious multi-disciplinary journal Nature (the “Nature paper”), has attracted broad attention.
This attention is for good reason.

A natural opportunity. In the early 1990s, due to Very Large Scale Integration (VLSI), integrated
circuits (ICs) became so complicated that designing a high-performance IC without software au-
tomation became impossible. The field of EDA historically developed by stringing together “point”
optimization steps (e.g., logic optimization, technology mapping, placement, sizing and buffering,
routing, etc.) into design flows where each point optimization step is typically an NP-hard combi-
natorial optimization problem solved with sophisticated domain-specific heuristics. In time, these
design flows took over most manual tasks of circuit designers leading to modern “RTL-to-GDSII”
flows—an industry staple for the last 20 years or so—in which register-transfer level (RTL) design
descriptions are automatically converted to complete chip layouts in terms of polygonal shapes (the
GDSII data format) while optimizing for or obeying constraints on critical metrics such as area, delay,
and power. Although modern chip design flows are largely automated, it is not uncommon for human
intervention to (a) customize the design flow (before software tools are used) in unusual cases, or (b)
make clever small changes to improve a particular chip design after software tools do their job.

Modern Al techniques in the field of EDA (1) attempt to minimize human intervention, (2) learn
how to predict the eventual design quality from the early stages of the design flow, and (3) aim to
rival established point-optimization techniques. The first category is a relatively recent development,
but design flow customization is already performed by commercial systems such as DSO.ai™



from Synopsys [29]. The second category can help guide the chip design process and make early
optimizations more successful (e.g., [34, 20]). The third category of improvements—and the Nature
paper addresses this category—leverages ML to improve individual point optimization steps in the
chip-design flow. Such results are of broader interest beyond the chip-design community because
core EDA tasks illustrate hard combinatorial optimization problems. A key scientific question, then,
is if machines can automatically learn to solve these problems faster or better than the state-of-the-art.

A difficult baseline to beat. In the last 50 years, our ability to design ever larger and complex
chips has been key to unlocking the full potential of Moore’s law leading to dramatic advances in
industries such as consumer electronics and entertainment, telecommunications, education, healthcare,
automotive, acrospace, and defense. Consequently, Moore scaling was supported by considerable
investment into EDA research since the 1970s, both in academia and in industry. As a result, EDA
has been absorbing relevant breakthroughs in optimization and Al methods.

In particular, EDA problems have provided fertile ground for testing the efficacy of new general-
purpose methods on practical problems. Examples include the adoption of the A* algorithm for wire
routing [33], graph partitioning algorithms like Kernighan—Lin [17] and Fiduccia—Mattheyses [12]
for automated placement [8, 12, 16], Boolean satisfiability solvers for verification and testing [32],
and—of particular significance to this paper—simulated annealing for circuit placement. In fact,
chip placement was one of two applications in the 1983 Science paper that proposed simulated
annealing [19]. Given the commercial importance of chip design and the sophistication of existing
automation for it, EDA tasks offer a good testbed to evaluate potential new fundamental algorithmic
advances such as deep reinforcement learning; as Sinatra observed: “if you can make it there, you
can make it anywhere.”

Inspired by the Nature paper, our work seeks stronger optimization techniques for chip layout by
drawing upon not only the newest RL methods, but also the rich toolbox of established methods [15,
22]. The results may surprise you.

2 Deep Reinforcement Learning for Chip Design

The EDA problem addressed in the Nature paper is block-level circuit placement which is the
problem of assigning locations to circuit components within a block (a portion of a design) so as to
minimize a certain objective function, subject to constraints.! A related optimization was illustrated
by the 1983 Science paper that developed simulated annealing for circuit placement to optimize the
length of wires that connect circuit components that must not overlap [19]. While circuits today
are much larger than those 40 years ago, and use more wiring, another key complication is the
presence of large macro blocks, such as IP blocks, memories, or register files, among numerous
small “standard cells.” The diversity of scale combines combinatorial block-packing with large-scale
optimization, and the resulting challenge has been thoroughly studied in the literature [15, 22, 25]
under the names of mixed-size circuit placement and “boulders-and-dust” placement. A common
approach is to first optimize a closed-form proxy objective (such as estimates of total wirelength),
then perform subsequent layout steps such as wire routing (which may fail), and then evaluate more
sophisticated figures of merit, such as the total length of routed wires and circuit timing. Academic
and commercial software tools for proxy optimization are widely known and can handle very large
circuits with millions of components, and a variety of methods exist to coerce these optimizations to
address post-routing figures of merit. It is possible that an experienced human designer with a deep
understanding of a particular design may improve upon layouts produced by software tools, but in
any case, most of the work is done by software. The strength of modern algorithms for mixed-size
placement is that they gradually co-optimize the locations of many components (large and small)
instead of making combinatorial decisions early and having to revisit those decisions, as was done by
earlier methods.

RL Formulation. Since the task of placing millions of components would entail an intractably large
action space for RL, the authors of the Nature paper consider a reduced placement problem with the
following approximations:

1. Clustered Graph. The standard cells are clustered using a standard partitioning tool to get
a 1000x smaller graph consisting of macros and a few thousand standard cell clusters.

! Somewhat confusingly, in several places, the Nature paper refers to this problem as “chip floorplanning”
Floorplanning is a different problem (see e.g., [6, Chapter 13], [26]).
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Figure 1: The methodology proposed in the Nature paper [24]. It differs from academic and commercial
state-of-the-art by placing the few large components (macros) in a separate step using a simplified “proxy” cost
model before placing the myriad small components (standard cells) using a detailed cost model. This old-school
“separation of concerns” is intended to make the problem tractable for RL but is not necessary for modern
numerical-optimization approaches which concurrently place macros and standard cells using gradient descent.

2. Coarse Grid. The placement region is partitioned into a coarse grid (128x128 or less),
and each macro is required to be placed at the center of a grid cell, and no two macros are
allowed to share a grid cell.

3. FD Placement. In an episode, the RL policy first places the macros one by one, and at the
end, the standard cell clusters are placed using a simple force-directed placer? to obtain
rough estimates of wirelength and congestion. These estimates are linearly combined to
form the reward for the episode.

To solve the overall placement problem, the authors propose to first obtain macro locations by solving
the reduced problem (the “macro placement” step), and then using a commercial tool to place the
standard cells (“standard cell” placement or PlaceOpt) (see Figure 1).> The methodology is thus
reminiscent of earlier placement methods which place large components first, and then optimize the
smaller components in contrast to modern methods that determine optimal locations for both large
and small objects concurrently.

To improve the runtime and possibly quality of RL, the authors propose to pre-train the policy on a
set of training instances (48 hours in their experiments). When presented with a new instance, the
policy is fine-tuned on that specific instance (for an additional 6 hours) to produce the final solution.

It is important to note that the objective function for RL is hand-crafted. Therefore,

e RL does not learn an objective that leads to better starting points for the downstream
optimization such as PlaceOpt. To do so would require feedback from the downstream
steps, but given each run of those steps can take hours, and current deep RL methods need
hundreds of thousands of runs (episodes) to learn from, this is impractical.

Neither does RL learn to produce layouts that are visually pleasing to physical designers or
capture their intuition of a good placement (e.g., exhibiting greater symmetry or regular-
ity). To learn human preferences would require a much larger database of human-crafted
placements rather than the 20 (unplaced) netlists used in the Nature paper. Such a dataset
would be difficult to obtain in practice given the sensitivity of chip designs. To the extent its
placements appeal to human intuition, it is due to the grid constraint (and so would be true
of solutions obtained by non-RL methods for the reduced problem as well).

3 Evaluating RL for Chip Placement

The main claim of the Nature paper is the ability of the RL agent to outperform human designers
and a state-of-the-art academic placement tool (RePlAce [11]) on a set of 5 proprietary TPU blocks
(Table 1 of the Nature paper). The experiment supporting this finding has several limitations.

% In recent work, the in-house FD placer has been replaced by a pre-existing academi placer [14].

3 The placement of the (actual) standard cells in this step should not be confused with the previously described
force-directed placement of the standard cell clusters during an RL episode to calculate the reward. The
PlaceOpt step may take hours, as various placement optimizations as well as netlist transformations are
performed based on accurate timing and routing models, whereas cluster placement must run in seconds
exploiting more crude approximations since it happens in every RL episode.



First, the superiority of human designers over chip layout software has not been established in the
Nature paper or prior publications. Moreover, by demonstrating software tools that outperform the
novel RL technique, it would be possible to disprove this claim.

Second, the results in the Nature paper are not well-defined and their components cannot be repro-
duced independently. Design quality attained by a human designer is a subjective baseline. Unlike
in Go or Chess, there is no world champion to be beat. Moreover, proprietary designs used as
benchmarks cannot be used by other researchers. Hence the question:

How does the novel RL method perform on circuit benchmarks commonly used in academic
research to evaluate new placement algorithms?

To perform this evaluation, we use the venerable IBM placement benchmarks [1, 5] (based on diverse
ASIC chips designed by IBM for a variety of companies) which have been used to evaluate academic
software since 2004. Using previously published results and our own computational experiments, we
compare RL to the three major types of placement algorithms (analytical, partitioning-based, and
simulated annealing).

Third, the new RL methods are supported by a potentially limited methodology. As noted in Section 2,
modern placement tools simultaneously place macros and standard cells [31, 30, 11, 13], but the
methods in the Nature paper are based on placing macros first, and then standard cells.

Fourth, the Nature paper compares and combines tools that optimize somewhat different objectives.
The RL agent optimizes for wirelength and congestion when placing macros, whereas the academic
optimizer RePlAce [11] optimizes only for wirelength. The commercial tool on the other hand uses a
complex objective that includes optimizing for worst-case timing path, power, routability etc.* This
leads to the following question:

How does the two-step methodology proposed in the Nature paper compare to a modern
mixed-size methodology in terms of an established objective that (1) the corresponding
tools can model and optimize explicitly, and (2) is commonly reported in the literature?

Comparisons against commercial mixed-size placement tools cannot be published due to license
restrictions. However, since RePlAce [11] itself is a strong mixed-size placer, we use it as a stand-in
for the commercial tool.

3.1 Experimental Setup

The IBM benchmark suite has been used in the literature to evaluate placement tools for more than a
decade and provides a longitudinal view on progress in the field. This benchmark suite comprises
18 ASIC designs which integrate 250-800 macros and 12K-200K standard cells. One of the designs
(ibm05) lacks macros, so we excluded it from the experiment (see Adya and Markov [2] for the
detailed benchmark statistics).

For each benchmark circuit, we consider two methodologies and several placement tools.

o Two-Step: The methodology from the Nature paper that first clusters the circuit, then places
macros, then places smaller circuit components (standard cells),

o Mixed-Size: Processing the circuits directly without clustering, while simultaneously plac-
ing macros and smaller components (this capability has been routine among academic and
industry tools in the span of the last decade).

To make our experiments reproducible, we place standard cells using a leading academic tool rather
than proprietary commercial tools with costly licenses. The impact on layout metrics appears minor
and does not affect the results of comparisons between the methodologies, given that we use the same
academic tool in the mixed-size methodology.

4 This mismatch in objectives, along with the greater spacing entailed by the coarse grid for the RL, may explain
why RePlAce underperformed in timing and routing congestion observed in their experiment: The RePlAce
solution may simply be more congested which causes longer path delays. This could be addressed by running
RePlAce in a congestion-driven mode, or by “bloating” macros to increase spacing.



Table 1: Comparison of the RL algorithm proposed in the Nature paper with RePlAce on a set of public
benchmarks. RePlAce consistently produces better wirelength than RL with five orders of magnitude less
compute. The CPU-Seconds for RL algorithm is computed using a common rule of thumb—1 GPU is equivalent
to 10 CPUs. Section A explains the details of comparison metrics.

‘Wirelength (HPWL) C ion (Median) ‘Total Compute (CPU-Seconds)
RL

RL RePlAce | Rel. Imp. RL | RePlAce | Rel. Imp. Macros | Std-Cells | RePlAce Ratio
ibm01 3,171,490 2,282,370 38.96% | 27.42 15.84 73.11% | 2.76E+07 16 36 | 7.68E+05
ibm02 5,511,850 | 4,759,440 15.81% | 11.71 1.75 51.18% | 2.76E+07 28 54 | 5.12E+05
ibm03 7,999,620 6,435,680 24.3% | 1531 10.15 50.83% | 2.76E+07 32 65 | 4.25E+05
ibm04 8,685,600 | 7,261,170 19.62% | 27.85 16.00 74.07% | 2.76E+07 43 70 | 3.95E+05

ibm05 (no macros)
ibm06 6,347,590 5,807,790 9.29% 6.41 5.12 25.23% | 2.76E+07 46 64 | 4.32E+05
ibm07 11,770,500 9,856,720 19.42% | 18.07 16.70 8.26% | 2.76E+07 73 95 | 2.91EH05
ibm08 13,476,900 | 11,467,000 17.53% | 23.40 14.71 59.10% | 2.76E+07 83 112 [ 2.47E+05
ibm09 14,873,500 | 12,000,600 23.94% | 13.79 11.72 17.70% | 2.76E+07 90 113 | 2.45E+05
ibm10 44,078,200 | 27,428,500 60.70% | 17.15 11.26 52.29% | 2.76E+07 149 318 | 8.69E+04
ibm11 21,873,100 | 16,997,600 28.68% | 20.31 13.55 49.87% | 2.76E+07 117 167 | 1.66E+05
ibm12 43,857,000 | 30,633,300 43.17% | 24.25 15.29 58.57% | 2.76E+07 130 258 | 1.07E+05
ibm13 27,892,900 | 22,013,800 26.71% | 25.75 17.39 48.14% | 2.76E+07 150 210 | 1.32E+05
ibm14 45,531,700 | 34,180,200 33.21% | 47.92 3443 39.19% | 2.76E+07 239 406 | 6.81E+04
ibm15 52,005,600 | 45,136,100 15.22% | 39.91 32.88 21.41% | 2.76E+07 369 455 | 6.08E+04
ibm16 64,208,400 | 51,604,800 24.42% | 31.66 21.64 46.29% | 2.76E+07 396 523 | 5.29E+04
ibm17 81,436,500 | 63,593,000 28.06% | 63.16 45.24 39.59% | 2.76E+07 441 658 | 4.20E+04
ibm18 45,067,400 | 39,943,300 12.83% | 36.48 32.08 13.72% | 2.76E+07 449 539 [ 5.13E+04
Average — — 25.99% — — 42.86% — — — —
Geomean — — — — — — = — — | 1.65E+05

For the two-step methodology from Nature, we use the (code of the) RL implementation described in
the Nature paper to place macros. We then fix the macro locations, and use RePlAce to place standard
cells. We consider both variants of the RL method presented in the Nature paper:

e RL-pt (“RL with pre-training”): For this configuration, we pre-train a policy on 20 TPU
blocks (for 48 hours using 200 CPUs and 20 GPUs) and then fine-tune for 6 hours (using
160 CPUs and 16 GPUs) on the specific benchmark.

e RL: For this configuration, we do not use any pre-training, but simply train the policy on the
specific benchmark for 24 hours (using 160 CPUs and 16 GPUs).

‘We compare RL against two pre-existing baselines in two different contexts:

e RePlAce: Since RePlAce can solve the mixed-size placement problem, we simply use it to
simultaneously place both macros and standard cells. Thus RePlAce provides a baseline for
a modern placement flow that does not separate the macro and standard cell placement steps.

e SA: We consider a version of the simulated annealing baseline presented in the Nature
paper that is strengthened with some new moves and provided with the same amount of
compute resources as RL (we discuss this in more detail in the next section). Since SA
solves the same reduced optimization problem as RL and RL-pt (see Section 2), it provides
an alternative baseline for the atavistic flow proposed in the Nature paper. Just as with the
RL algorithms, we use RePlAce to place standard cells after obtaining macro locations from
SA.

The objective for all the methods is to minimize wirelength subject to density constraints (that is,
no overlap between components), since as noted in the Nature paper, wirelength tends to be well
correlated with dynamic power, routing congestion, and timing metrics; but is much faster to compute
in the inner loop of an optimizer®. In all cases, we use NTUPlace3 [10] to legalize the final placement
(that is, to ensure no overlap) and to perform detailed placement. Throughout the design flow, macro
orientations were kept fixed. We measure the final pin-to-pin wirelength (specifically, half perimeter

® State-of-art commercial tools for mixed-size placement are able to optimize for more detailed timing and
congestion metrics while concurrently placing macros and standard cells. Although comparisons with those
tools are of great interest, the results cannot be published due to licensing restrictions.
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Figure 2: The final placement from RL (left) and RePlAce (right) for the ibm10 benchmark. The coarse
grid constraint imposed in the RL formulation (in order to have a manageable action space) can lead
to unnecessary spreading of small macros which can increase wirelength (and congestion).

wirelength) using WLCalc [9], and median congestion using an academic congestion estimation
tool [4] even though none of the tools explicitly optimize for congestion.

We used the default settings of RePlAce for all our experiments except for the cofmax parameter
which was lowered to 1.03 (from 1.05) to aid convergence on a few benchmarks. This parameter
corresponds to max(uy) value in ePlace-MS algorithm [21, Section III] (on which RePlAce is based)
that controls the decay/growth rate between the wirelength coefficient and the density coefficient.

3.2 Results

A summary of results is shown in Table 1. We find that RePlAce produces 26% better wirelength
than RL while using 5 orders of magnitude less computation. Although congestion was not directly
optimized, the considerable difference in wirelength is also reflected in median congestion which is
43% lower.

Pre-training does not help the RL agent much. Although RL-pt reduces the run-time (and compute)
by 4X, RL-pt is still more than 4 orders of magnitude computationally more expensive than RePlAce,
yet produces 3% worse wirelength than RL (Table B1).

‘With similar computational resources, SA does better than RL producing a relative improvement
of 4.5% in wirelength (Table B2).® This indicates that even within the confines of a split macro
and standard cell placement flow, there is room for improvement, and that RL as a combinatorial
optimizer may have room to improve. We study this aspect in greater detail in the next section.

Finally, we note that although RL is not competitive on these benchmarks against RePlAce, a tool
based on the relatively recent electrostatics-based approach from 2015, it compares favorably—
in terms of wirelength—against Capo and FengShui, prior generation tools that are based on the
partitioning-driven approach from the early 2000s. RL produces an improvement of 2% in wirelength
compared to Capo v9.0 [3] and is only 4% worse than FengShui v2.6 [18]. However, RL uses 3-4
orders of magnitude more compute than these tools (compare Table 7 of [3] with Table 1).

3.3 Discussion

An inherent weakness in the formulation proposed in the Nature paper is illustrated by ibm10, the
benchmark on which RL performs the worst compared to RePIAce. Recall that in order to ensure a
tractable action space in RL, a grid cell can only be occupied by a single macro, and that the grid is
quite coarse (at most 128 x 128). Thus if there are many small macros, they are forced to be spread

6 This observation correlates with a 3.39% improvement in the proxy cost with a win-rate of >88% for SA
relative to RL.



apart since they are confined to their own respective grid cells (see Figure 2). This can dramatically
increase the wirelength (and even congestion due to greater aggregate routing demand).

‘While spreading due to the grid constraint may help with congestion control around macros in some
cases, it is not sufficient, and is usually inferior to more flexible “bloating” techniques:

o Not sufficient: If macros are large compared to grid cells, then the grid constraint is not
sufficient to enforce distance between two neighboring macros (they may still abut).

o Not necessary: If congestion from macros is a problem, a common practice is to “bloat”
the macros, that is, to virtually increase their bounding box to create a greater separation
from other objects. This can be done in RePlAce without incurring the run-time overhead of
a discrete placement on a grid. Bloating becomes more powerful when performed based on
congestion maps estimated for a given trial placement.

4 Evaluating RL as a Combinatorial Optimizer

In applying RL to chip placement, the authors of the Nature paper have formulated a specialized
combinatorial optimization problem, namely the reduced problem from Section 2 (“coarse-grid
clustered-graph placement”), and leveraged the solution of this problem to solve the actual chip
placement problem. As shown in the previous section, the authors’ implementation is sometimes
inferior to modern mixed-size placement tools that avoid clustering and gridding. This gap may
be due to weaknesses in the problem formulation or weaknesses in RL-based optimization. The
following question helps to clarify this ambiguity:

How does DRL compare with other well-studied generic techniques such as simulated
annealing in solving an application-specific combinatorial optimization problem?

In addition to the chip placement context, this question can clarify the broader potential of current
RL to solve practical optimization problems: The coarse-grid clustered-graph placement problem is
representative of practical problem formulations and instances, and the RL implementation from the
Nature paper is representative of the sophistication an experienced machine learning team working
for a few years can bring to bear on a new problem. We hope that our experiments help understand the
potential of RL in solving practical A'P-hard combinatorial optimization problems, and particularly,
the capacity of an agent to learn from “self-play” on a set of training instances, an active area of
research (see e.g., [7, 23]).

4.1 Experimental Setup

‘We build on the comparison study with simulated annealing that is presented in the Nature paper. We
use the 20 blocks from a recent TPU design which comprised the training set in the Nature paper as
our benchmarks since they are most representative of the kinds of blocks the system is designed for.

Algorithms. We compare the following algorithms (using the same codebase as Nature):

e RL: This is the RL algorithm described in the Nature paper without pre-training which is
run for 6 hours on the specific benchmark.

RL-pt-ub (“RL pre-training upper bound”): This is RL with pre-training on the 20 TPU
blocks (for 48 hours using 200 CPUs, 20 GPUs) and then fine-tuned for 6 hours (using
160 CPUs and 16 GPUs) on the specific benchmark. Since the pre-training is on the same
benchmark set on which fine-tuning is done, this setup does not reflect the performance on
a new (previously unseen) block, but allows us to obtain an upper bound on what can be
learnt offline from self-play across multiple instances.

SA: The implementation of simulated annealing from the Nature paper with some simple
improvements (described in the next section) which is also run for 6 hours on the specific
benchmarks. SA uses the same objective that is provided as reward for RL.

Note that using RL-pt-ub for comparison has the benefit of sidestepping questions about train and test
overlap, and whether training and test examples come from the same distribution, which are both
fraught questions in the context of the Nature paper given the presence of only a small number of



Table 2: A comparison of the simulated annealing used in Nature (SA-Nature) and ours (SA) (see Section 4).

SA-Nature SA

Actions swap, shift,mirror | swap, shift, mirror,

move, shuffle

Action Sampling Probability (5. 3 30 L LI 0L 5L 520

# of Actions / Iteration (n: # of macros) 2n 2n, 3n, 4n, 5n]

Maximum Temperature [1e-5, 3e-5, Se-5, 7e-5, | [5e-5, 7e-5, le-4, Se-4, 1e-3]
le-4, 2e-4, 5e-4, le-3]

Maximum SA Episode Length (# of iterations) | [5e4, 1e5] [2e4, 5e4]

# of Random Seeds 5 4

Total SA workers IxIx1x8x2x5=280 [ Ix2x4x5x%x2x4=2320

blocks available for the study, and the common presence of near duplicates in physical design.” It
represents the best bounds that pre-training can buy.

We compare RL, RL-pt-ub, and SA on the value of the objective (that is, the proxy cosf) achieved by
their respective best solution.

4.2 Strengthening the SA Baseline

The authors of the Nature paper describe, in addition to RL, a simulated annealing based approach
to solving the reduced coarse grid placement problem (SA-Nature), and use that as a baseline to
evaluate the efficacy of RL on this problem. We strengthen SA-Nature as follows (see the detailed SA
hyperparameters in Table 2):

e Two new actions. (i) A move action that allows a macro to be placed at any legal location.
This is more effective than the shift action in the original action set used by the Nature paper
which only moves a macro to a neighboring legal location since it allows macros to cross
blockages. (ii) A shuffle operation that permutes 4 macros at a time. This generalization of
the swap operation is useful where there may not be free room for a single large macro to
move to, but it may be “permuted” with 3 smaller macros that are close by.

Equal compute as RL. We use 320 CPUs to run 320 parallel SA runs with various hyper-
parameters. This matches the compute provided to RL which is 160 CPUs and 16 GPUs®. We
did not optimize the hyperparameter set of SA to improve performance for this experiment
but simply extended the hyperparameter set used in the Nature paper to accommodate the
new actions and additional CPUs.

Better initialization. We use a random placement algorithm to generate initial macro
placements for SA where it sequentially places macros by randomly sampling legal grid
locations on a chip canvas. However, if it is not able to find a legal macro placement,
two simple packing methods are tried in sequence to place the macros instead: (i) spiral
placement where the macros are sequentially placed around the boundary of the chip canvas
in spiral fashion, and (ii) greedy packer where the macros are placed from the bottom-left
corner to the top-right corner to minimize the gap between macros. Both packing methods
start with the largest macros (which is similar to the order used by the RL agent).

We refer to the resulting simulated annealing implementation as SA. A full comparison of the
hyperparameter configurations of SA and SA-Nature is shown in Table 2. We explain the details of
all the comparison metrics in Section A. With these changes, we find that SA is a stronger baseline
than SA-Nature with a 90% win-rate at 6 hours and a relative cost improvement of 1.8% at 6 hours
(see Table B3 for details).

Our objective with this exercise was to see how a modest engineering effort could improve SA-Nature,
but the underlying SA formulation in the Nature paper has a fundamental limitation that we do not
address here. Although during annealing, the wirelength is allowed to increase, no action may violate
legality (i.e., lead to overlap). This can cause SA to get stuck in certain parts of the solution space. For

7 The Nature paper does not discuss the question of near-duplicates between the training and test set, and how
that may impact the results. Near-duplicates are common in physical design since there is reuse of blocks
across different generations of a chip, multiple versions of the same block as a design is refined, and multiple
physical variants of the same logical block.

8 This uses a common rule of thumb—also used in the Nature paper—that 1 GPU is equivalent to 10 CPUs.



Table 3: A comparison of simulated annealing (SA) and an upper bound on RL with pre-training (RL-pt-
ub) on 20 blocks used in the Nature paper. SA wins on more than two thirds of the benchmarks, and
shows a relative improvement in proxy cost of >4% over RL-pt-ub. RL-pt-ub was unable to find a
feasible solution for block20 (even on a second independent run). Section A explains the details of
comparison metrics.

Proxy Cost

k | RL-pt-ub SA | Rel. Imp. Score
block01 0.04297 | 0.04289 0.19% 1.0
block02 0.04419 | 0.04448 -0.65% 0.0
block03 0.04406 | 0.04393 0.29% 1.0
block04 0.04420 | 0.04432 -0.27% 0.0
block05 0.05497 | 0.05573 -1.37% 0.0
block06 0.04618 | 0.04437 3.92% 1.0
block07 0.03442 | 0.03072 10.74% 1.0
block08 0.03497 | 0.03458 1.13% 1.0
block09 0.06639 | 0.06669 -0.45% 0.0
block10 0.06781 | 0.06826 -0.66% 0.0
block11 0.05940 | 0.05930 0.17% 1.0
block12 0.06163 | 0.06154 0.14% 1.0
block13 0.05088 | 0.05161 -1.41% 0.0
block14 0.05339 [ 0.05286 1.00% 1.0
block15 0.06468 | 0.06537 -1.06% 0.0
block16 0.03254 | 0.02531 22.22% 1.0
block17 0.03218 | 0.03143 2.33% 1.0
block18 0.10482 | 0.08133 2241% 1.0
block19 0.09623 | 0.07735 19.62% 1.0
block20 Failed | 0.07663 N/A 1.0
Average — — 4.13% | 67.50%

example, when there is a significant imbalance in macro sizes (e.g., see Figure 2), the larger macros
are unlikely to move from their initial location. A better SA formulation may tolerate violations of
legality early on in the optimization, to avoid getting stuck in this manner, or do multiple short runs of
SA from various initial points. RL does not get stuck in this particular manner, since in each episode,
it starts from a fresh canvas, and places macros one by one.

4.3 Results

Our main result is that even if RL is pre-trained for 48 hours on the same set of blocks on which it
is fine-tuned for a further 6 hours, it is not enough to beat SA running for only 6 hours. As Table 3
shows, SA has a win-rate of 67.5% against RL-pt-ub, and a relative improvement of >4% in the
objective. It should be noted that because of the pre-training, the aggregate compute (for all 20
benchmarks) used by RL-pt-ub is 1.5x the corresponding compute used by SA’.

By way of ablation, we confirm that pre-training—at least on the same set of examples that are used
for fine-tuning—helps. RL-pt-ub has a win-rate of 82.5% and a relative improvement of 1.62% in the
objective against RL (see Table B4).

5 Conclusion

Our work seeks chip placement techniques that deliver best results on public benchmarks and on
recent industry designs in terms of design quality metrics and also runtime. It is rare for empirical
comparisons between leading techniques to show a clear winner—tradeoffs are more typical. To this
end, our comparisons put side by side a novel RL technique against leading established techniques,
with several enhancements. Empirical results indicate that these strong baselines reliably attain state
of the art performance both on common public benchmarks and industrial designs.

Chip design flows consist of many stages and evaluate a series of increasingly realistic design metrics.
Neither the Nature paper nor our study report end metrics at the stage where chip designs can be

° We note that if SA is run with half the compute—by using only 2 random seeds instead of 4 (see
Table 2)—to match only the CPU resources used by RL-pt-ub during fine-tuning, it still has a
win-rate of 55% and a relative improvement of 3.82% in proxy cost.



manufactured (detailed routing, final timing closure, design rule checks, etc.). We measure design
metrics before routing but provide early estimates of routing congestion. These metrics are common
in both academia and industry. They generally correlate with later-stage design metrics, except that
optimizations that target later-stage metrics directly can spoil early-stage metrics. The RL technique
in the Nature paper does not explicitly compute later-stage metrics and does not track such metrics
computed by external EDA tools.!? Therefore, comparisons by early-stage metrics are fair and should
be representative of success in practice. Moreover, the large gap observed in our experiments (26%
by wirelength and 42% in congestion) leaves little room for trend reversal in terms of later-stage
metrics.

Despite the limitations of the reported metrics, the Nature paper mentions that RL contributed to
layouts that were sent to a third party for post-placement optimization of a recent design. However,
the RL method described in the paper was not used for all the blocks in that design, and since other
methods were used for the remaining blocks, that would indicate a benchmarking loss for the method
proposed in the Nature paper. Characterizing the set of other methods used, and measuring the
relative losses would be an important scientific result.!! Furthermore, while the main contribution
of the Nature paper was in RL, these blocks were post-processed by SA, and none of the detailed
metrics used in their main experiment were reported for the ablation or for a comparison with SA. It
should be noted that results reported in Table 1 of the Nature paper do not correspond to the blocks
sent to the third party, but to five blocks from a previous generation design. A critical contribution
to the literature would be to characterize the performance of SA on these 5 blocks, and of all the
methods, on the remaining blocks of that previous generation design.

In comparisons on public benchmarks by interconnect length and routing congestion estimates, layout
quality attained by the RL methodology from the Nature paper is far below that of the leading
academic software RePlAce (it was also used in the Nature paper, but in a different capacity). This
loss can be decomposed into components—one that depends on the quality of RL, and the remainder
that is due to the clustering-and-gridding methodology. We study the first component by comparing
RL to simulated annealing (SA) and find consistent but modest losses. The methodology losses are
more substantial and definitely leave room for improvement, although closing the performance and
especially the computation cost gap with RePlAce would require a leap.

The Nature paper claims that RL outperforms human chip designers, but our stronger baselines
outperform RL. Hence, the work of chip designers used in the Nature paper can not serve as a
strong baseline in scientific settings. The consideration of runtime makes this conclusion particularly
clear. Software takes minutes to produce high-quality placements of chip designs with hundreds of
thousands components. In many cases, a human would take longer to read and understand the circuit,
let alone optimize it.

‘We hope that our insights and our results help improve follow-up research on uses of RL in chip
design problems.
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Appendices

A Comparison Metrics

Quality. In our experiments we measure the cost of the best solution produced by each algorithm.
‘We compare the algorithms based on the following metrics:

e Win rate. This is computed as follows: The algorithm that obtains the minimum cost
solution on a benchmark gets a score of 1 point for that benchmark. If multiple algorithms
attain the same (up to 0.1% relative error) minimum cost, we declare a tie and divide the
point equally between them. The win-rate of an algorithm is its average point score over the
benchmark set. This convenient but coarse aggregate of overall performance is mostly used
to tell if one of the algorithms is clearly better or if the algorithms are generally comparable.

Relative improvement (Rel. Imp.) When comparing two algorithms A and B in a head-
to-head fashion over a set of benchmarks, we compute the relative cost improvement of A
over B on a particular benchmark as (b — a)/min(a, b) where a and b are the costs of the
solutions produced by A and B respectively (on that benchmark). The relative improvement
of A over B is the average of this value over the benchmark set.
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As summary statistics, win-rate and relative cost improvement have complementary strengths: Win-
rate is less influenced by the out-performance of one algorithm over another on one or a few
benchmarks than relative cost improvement, but at the same time, may overstate the small differences
in the costs of the solutions produced by two algorithms. Therefore, we show both these statistics
when summarizing results.

Runtime. Since RL constructively produces a solution, it may not produce a valid (feasible) solution
for a while. We measure RL runtime from the time it produces the first feasible solution or 35 minutes
after start, whichever is earlier. We do not need this consideration for SA since SA always starts
with a valid solution and optimizes it. RL and SA runtimes also exclude the time taken to cluster the
standard cells.

B Detailed Results

This section provides more details on the results referenced from the main text.
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Figure B1: Convergence curves of SA, RL, and RL-pt-ub (“upper bound on RL with pretraining”) on
a set of 20 blocks from a recent TPU design. Note that the y-axis does not start at 0. RL and RL-pt-ub
failed to produce feasible solutions for block18 and block20 (even with second independent runs),
respectively. See Section 4 for details.



Table B1: Detailed comparison of RL and RL-pt (see Section 3 for details).

Wirelength (HPWL) C (Median)
Benchmark RL RL-pt | Rel. Imp. RL RL-pt | Rel. Imp.
ibm01 3,171,490 | 3,786,510 -19.39% 27.42 31.12 -13.50%
ibm02 5,511,850 | 5,521,780 -0.18% 11.71 11.53 1.61%
ibmo03 7,999,620 8,343,440 -4.30% 15.31 17.33 -13.18%
ibm04 8,685,600 8,806,920 -1.40% 27.85 23.71 17.49%
ibm05 (No Macros)
ibm06 6,347,590 6,454,980 -1.69% 6.41 6.48 -1.10%
ibm07 11,770,500 | 11,771,200 -0.01% 18.07 21.08 -16.63%
ibm08 13,476,900 | 14,489,100 -7.51% | 23.4,26.18 | -11.87%
ibm09 14,873,500 | 14,167,200 4.99% 13.79 15.22 -10.34%
ibm10 44,078,200 | 46,304,200 -5.05% 17.15 19.84 -15.72%
ibm11 21,873,100 | 22,878,900 -4.60% 20.31 25.96 -27.86%
ibm12 43,857,000 | 43,577,300 0.64% 24.25 25.66 -5.84%
ibm13 27,892,900 | 28,282,100 -1.40% 25.75 29.63 -15.03%
ibm14 45,531,700 | 48,356,400 -6.20% 47.92 50.43 -5.23%
ibm15 52,005,600 | 51,848,600 0.30% 39.91 42.34 -6.08%
ibm16 64,208,400 | 70,492,300 -9.79% 31.66 34.72 -9.66%
ibm17 81,436,500 | 82,082,800 -0.79% 63.16 61.48 2.72%
ibm18 45,067,400 | 44,187,200 1.99% 36.48 35.45 2.92%
Average — — -3.20% — — -7.49%

Table B2: Detailed comparison of RL and SA (see Section 3 for details).

‘Wirelength (HPWL) C (Median) Proxy Cost
Benchmark RL SA | Rel. Imp. RL SA T Rel. Imp. RL SA | Rel. Imp.
ibm01 3,171,490 | 2,585,270 22.68% | 27.42 | 18.90 45.10% | 0.17174 | 0.14848 15.66%
ibm02 5,511,850 | 5,487,130 045% | 11.71 | 9.81 19.44% | 0.12057 | 0.11604 3.90%
ibm03 7,999.620 8,067,560 -0.85% | 15.31 [ 18.67 -21.91% | 0.15781 | 0.14969 5.42%
ibm04 8,685,600 8,331,590 4.25% | 27.85 | 23.77 17.16% | 0.13475 | 0.13057 3.20%
ibm05 (No Macros)
ibm06 6,347,590 | 6,908,770 -8.84% | 6.41 | 14.12 | -120.30% | 0.12581 | 0.13407 -6.57%
ibm07 11,770,500 | 11,102,600 6.02% | 18.07 | 21.55 -19.25% | 0.12993 | 0.12965 0.22%
ibm08 13,476,900 | 13,106,500 2.83% | 23.4 | 25.96 -10.95% | 0.14611 | 0.14291 2.24%
ibmo09 14,873,500 | 13,544,500 9.81% | 13.79 | 17.30 | -25.42% | 0.11578 | 0.11443 1.18%
ibm10 44,078,200 | 42,313,700 4.17% | 17.15 | 26.66 -55.47% | 0.12632 | 0.12184 3.68%
ibm11 21,873,100 | 21,011,600 4.10% | 20.31 | 28.88 -42.21% | 0.13562 | 0.13440 0.91%
ibm12 43,857,000 | 41,050,000 6.84% | 24.25 | 32.82 -35.34% | 0.14700 | 0.13792 6.58%
ibm13 27,892,900 | 25,989,300 7.32% | 25.75 | 29.23 -13.51% | 0.13974 | 0.13678 2.16%
ibm14 45,531,700 | 40,580,100 12.20% | 47.92 | 41.80 14.65% | 0.21130 | 0.19613 7.73%
ibm15 52,005,600 | 51,006,400 1.96% | 39.91 | 40.09 -0.44% | 0.18306 [ 0.18045 1.44%
ibm16 64,208,400 | 61,454,200 4.48% | 31.66 | 33.92 -7.14% | 0.15784 | 0.14742 7.07%
ibm17 81,436,500 | 72,040,100 13.04% | 63.16 | 55.78 13.23% | 0.23965 | 0.23019 4.11%
ibm18 45,067,400 | 44,200,200 1.96% | 36.48 | 35.46 2.90% | 0.23925 | 0.24222 -1.24%
Average — = 5.44% — — -14.09% — — 3.39%




Table B3: Detailed comparison of SA-Nature and SA (see Section 4 for details).

Proxy Cost
Bencl k | SA-Nature SA | Rel. Imp. Score
block01 0.04294 | 0.04289 0.12% 1.0
block02 0.04475 | 0.04448 0.60% 1.0
block03 0.04420 | 0.04393 0.61% 1.0
block04 0.04645 | 0.04432 4.59% 1.0
block05 0.05785 | 0.05573 3.66% 1.0
block06 0.04336 | 0.04437 -2.28% 0.0
block07 0.03322 | 0.03072 7.53% 1.0
block08 0.03471 | 0.03458 0.37% 1.0
block09 0.06831 | 0.06669 2.37% 1.0
block10 0.06877 | 0.06826 0.74% 1.0
block11 0.05943 | 0.05930 0.22% 1.0
block12 0.06149 | 0.06154 -0.08% 0.5
block13 0.05193 | 0.05161 0.62% 1.0
block14 0.05462 | 0.05286 3.22% 1.0
block15 0.06533 | 0.06537 -0.06% 0.5
block16 0.02696 | 0.02531 6.12% 1.0
block17 0.03168 | 0.03143 0.79% 1.0
block18 0.08279 | 0.08133 1.76% 1.0
block19 0.07975 | 0.07735 3.01% 1.0
block20 0.07978 | 0.07663 3.95% 1.0
Average — — 1.89% | 90.00%

Table B4: Detailed comparison of RL and RL-pt-ub (see Section 4 for details).

Proxy Cost
Benchmark RL | RL-pt-ub | Rel. Imp. Score
block01 0.04298 0.04297 0.03% 0.5
block02 0.04437 0.04419 0.40% 1.0
block03 0.04490 0.04406 1.87% 1.0
block04 0.04461 0.04430 0.69% 1.0
block05 0.05701 0.05497 3.58% 1.0
block06 0.04691 0.04618 1.55% 1.0
block07 0.03308 0.03442 -3.88% 0.0
block08 0.03511 0.03497 0.39% 1.0
block09 0.06699 0.06639 0.89% 1.0
block10 0.06817 0.06781 0.53% 1.0
block11 0.05972 0.05940 0.54% 1.0
block12 0.06172 0.06163 0.14% 1.0
block13 0.05243 0.05088 2.95% 1.0
block14 0.05358 0.05339 0.36% 1.0
block15 0.06522 0.06468 0.83% 1.0
block16 0.03583 0.03254 9.19% 1.0
block17 0.03184 0.03218 -1.07% 0.0
block18 Failed 0.10482 N/A 1.0
block19 0.10710 0.09623 10.15% 1.0
block20 0.10005 Failed N/A 0.0
Average - — 1.62% | 82.50%




