
Row-Based Global Routing

Chapter 7

Row-Based Global Routing

7.1 Introduction

Global routing is the decomposition of an integrated circuit interconnection network

into net segments, and the assignment of these net segments to regions or channels. The

global routing results will be fed to a detailed router on a channel by channel basis. The

detailed router will create the physical geometries necessary to manufacture the photo-

masks. This divide-and-conquer strategy produces global view solutions while managing

the complexity of large circuit designs. It is assumed that the positions of the pins of a net

have been determined in the placement phase. Global routing is known to be an NP-hard

problem [105]. Therefore heuristic and approximation algorithms must be used.

7.1.1 Previous Work

One of the most common approaches in global routing is the maze route approach

[130][156]. A major disadvantage of maze routing is that its space complexity is ,

where n represents the number of routing grids in each dimension of the plane. Another is

routing order dependence. The space complexity problem can be eliminated using line

probe algorithms, but the routing order dependence problem remains [89][152]. One could

first route nets in a random order, ripping them up and rerouting them iteratively as Nair

did. However, there is no guarantee that the rip-up order is optimal [162].

 Global routing using a graph to model the network has also been proposed [4][138].

The vertices of the graph denote the cell terminals of the net and feedthrough ports. The

edges correspond to minimal connections between adjacent pins within one channel. Glo-

bal routing is accomplished by finding a Steiner tree for each net on the graph. The main

O n2()

148

Row-Based Global Routing

drawbacks of this approach are the net routing order and mapping of feed-through pins.

Also, as circuits continue to get larger, the increasing number of feedthrough pins will

require more computer memory.

 Hierarchical methods have also been proposed to handle large scale global routing

problems. The problem is first partitioned into a hierarchy of global routing detail. Two

schemes are possible: top-down [21][87] and bottom-up [144]. All nets are routed simulta-

neously at each hierarchical level eliminating the net ordering problem. The results of the

current level are then refined in the next level of the hierarchy. Hierarchical methods work

extremely fast and are useful in solving large-size problems. However, since the solutions

at each level rely heavily on the solutions of previous levels and on the quality of the par-

titions, the resulting global routing often is suboptimal.

 Constructive algorithms have been offered for gate array global routing. Li proposed

routing from the chip’s periphery and proceeding inward [138]. This method does not

minimize total channel density or wire length. It only attempts to complete all of the

routes. In 1987, Blair and company introduced an odd-even heuristic able to produce a

solution within a factor of 1.5 of the optimal solution, but it only applies for two pin nets

[14].

Linear programming techniques have been applied to the global routing problem as

well [163][175][232][233]. Raghavan and others have attempted to solve the global rout-

ing integer linear program through the use of a randomized rounding technique

[163][175]. An initial solution was found using a linear program solver. The final solu-

tions were obtained by rounding any fractional numbers in the solution to 0 or 1 using a

randomized technique. Although this approach finds the global routing solutions of all the

nets simultaneously, it does not handle multiple pin nets correctly.

149

Row-Based Global Routing

Single and multicommodity flow algorithms have also been applied to global routing.

These methods use a graph model to describe the global routing problem. Each edge is

assigned a capacity equal to the number of nets that may be routed through the corre-

sponding channel. A network flow (single or multicommodity) algorithm is executed to

determine the number of nets that may flow through a channel. Meixner and Lauther used

a single-commodity flow formulation to improve an existing global routing solution and to

guarantee integer solutions [150]. Carden and Cheng used Shahrokhi and Matula’s multi-

commodity network flow algorithm to quickly derive a fractional solution for multiple pin

nets [24]. Randomized rounding was used to obtain an integer solution. However, they can

no longer guarantee an optimal solution.

In order to reduce execution time for global routing, algorithms for parallel computer

architectures have been proposed [17][185]. Rose implemented a parallel global router for

standard cells [185]. This global router generates a large set of routes between two pins

and uses Nair’s rip-up and reroute method to reduce the routing order dependency.

Global routers have been proposed to handle each of the design styles. They have been

designed for gate arrays [49][138], standard cells [40][60][131][157][185], sea-of-gates

[97][132][167][208], and macro cells [29][32][183][231]. Rose and colleagues have

implemented global routers tailored for island-style field programmable gate arrays

(FPGAs) [186][187]. However, this global router does not handle row-based field pro-

grammable gate arrays.

Other global routers have been augmented to handle additional constraints. Timing-

driven global routers have also been proposed. Prasitjutrakul and Kubitz presented a tim-

ing-driven global router which maximized the minimum delay slack [169]. Cong and col-

leagues have produced a global router which bounds the length of the longest

interconnection path using a bounded-radius minimum routing tree [41]. Cong also pro-

posed a standard cell global router which minimizes area [40]. This router condenses the

150

Row-Based Global Routing

width of the chip by minimizing feedthroughs and the height by minimizing total channel

density. However, it does not explicitly minimize area - the product of width times height.

It also does not add Steiner points to further reduce the wire length. Other global routers

have used linear assignment to optimally allocate feedthrough resources [150][167].

Meixner and Lauther presented a global router which uses linear assignment when placing

feedthroughs to minimize wire length and vertical constraints [150]. However, it does not

consider congestion and only minimizes vertical constraint loops during feedthrough

assignment.

From the discussion above, we see that all of the previous global routing approaches

suffer from one or more of the following shortcomings:

(1) nets are routed sequentially, and thus suffer from net ordering.

(2) multiterminal nets are not properly handled.

(3) Steiner points to reduce the total interconnection length are not added.

(4) the total channel density is not minimized.

(5) the number of feasible routing pattern shapes are limited.

(6) area is not explicitly minimized.

(7) timing constraints are ignored.

(8) feedthrough resources are not optimally allocated.

(9) congestion is ignored during feedthrough assignment.

(10) FPGAs or multiple row feedthroughs are not handled.

(11) vertical constraint loops are not minimized.

151

Row-Based Global Routing

The TimberWolfSC global router [199][131] and its sea-of-gates derivative, SGGR

(Sea-of-Gates Global Router) [132], do not suffer from the first five problems. In Section

7.3, we will present a global routing algorithm which addresses all of these shortcomings.

For this reason, the TimberWolfSC global router will become the basis for our new global

routing algorithm.

7.1.2 Previous Work in Steiner Tree Generation

The primary subproblem in global routing is the generation of a Steiner tree for a set of

terminal pins. In 1966, Hanan showed that all points in an minimum rectilinear Steiner

tree (MRST) must be a member of the Cartesian cross-product of the terminal points [82].

In 1976, Hwang showed that the minimum spanning tree (MST) is an approximation to the

MRST with a worst-case ratio [95]. Kahng and Robins have recently cate-

gorized all previous Steiner tree algorithms [103]. They have shown that a large class of

“minimum spanning tree-based” rectilinear Steiner tree heuristics have a worst case per-

formance arbitrarily close to times optimal. They further subdivide the class into MST-

overlap algorithms and Kruskal-Steiner algorithms. In MST-overlap algorithms, a MST is

first generated, and then a shorter Steiner tree, which lies completely within the union of

bounding boxes of the MST edges, is found. Algorithms given by Hwang [96], J. H. Lee

[133], K. W. Lee [131], Ho [92], Hasan [84], and others fall broadly within this category.

Kruskal-Steiner algorithms build a Steiner tree by connecting the closest pair of compo-

nents until only one component remains. Kruskal-Steiner algorithms have been proposed

by Bern [12][13], Richards [181], Servit [202] and others [39]. Kahng and Robins have

proposed a new Steiner heuristic which iteratively finds optimal Steiner points to be added

[104]. This iterative Steiner heuristic has a worst-case bound of times optimal and out-

performs all known algorithms. Recently, Chua and Lim presented a algorithm

which can generate the k-shortest Steiner trees [34].

cost MST()
cost MRST()
-------------------------------- 3

2
---≤

3
2

4
3

O n nlog()

152

Row-Based Global Routing

7.2 Problems with Steiner Tree Algorithms

Table 7.1 shows a comparison between a previous TimberWolf global router and the

TimberWolfSC global router modified with the iterated Steiner tree algorithm of Kahng

and Robins[104]. This Steiner tree algorithm has been shown to outperform all known

Steiner tree algorithms. With this addition to the global router, the best results should be

achieved.

The first circuit in Table 7.1 is representative of circuits run with the TimberWolfSC

global router. The wire length is reduced slightly and the number of feedthroughs are

slightly increased using the iterated Steiner tree method. However, the final total density

remains virtually unchanged. In the second row of Table 7.1, SGGR (Sea-of-Gates Global

Router) was compared to TimberWolfSC augmented with the iterated Steiner method. In

this case, the modified TimberWolfSC clearly outperformed SGGR in terms of wire

length. However, the final total density is much higher. TimberWolfSC with the iterated

Steiner tree method fails to take advantage of the many feedthrough cells available in this

circuit. It is clear from this experiment that the shortest wire length Steiner trees for all

nets does not always yield optimum area results.

Table 7.1 Comparison between Steiner tree algorithms.

1 TimberWolfSC placement/TimberWolfSC global router.
2 TimberWolfSC placement/SGGR global router.
Data is averaged over 8 runs.

Circuit TimberWolfSC /SGGR
TimberWolfSC with iterated

Steiner

wire length feeds tracks wire length feeds tracks

primary11 944360 717.8 163.5 942816 749 163.4

primary22 4251730 4383 346.4 3811600 2982 359.6

153

Row-Based Global Routing

It is important that the global router understands the feedthrough resources that are

available for the design. If many feedthroughs exist, additional Steiner points may be

added without penalty to reduce the wire length. However, if feedthrough locations are

scarce, additional Steiner points will increase the chip area. Each Steiner point will

become a feedthrough cell. Since implicit feeds are limited, explicit feeds will need to be

added, increasing the width of the chip. This case is shown in Figure 7.1b.

7.3 New Global Router

We will describe a new generalized row-based global router suitable for standard cell,

gate-array, sea-of-gates, and field-programmable gate array (FPGA) circuits. This global

router is the first row-based global router to explicitly minimize chip area. During optimi-

zation, the Steiner trees are dynamically modified to minimize chip area. Reducing the

number of feedthroughs required in the longest row and minimizing the number of routing

tracks enables the global router to adapt to the diverse routing resources of radically differ-

ent technologies. The proposed global router uses exact port locations and density calcula-

tions throughout ensuring the correct construction of Steiner trees and calculation of chip

area. By using a linear assignment algorithm to minimize wire length and maximize free-

A B

DD

Figure 7.1 Feedthrough resources must be taken into account when building Steiner trees. A) Desired
Steiner tree if Steiner point separation D is greater than average feed separation. B) Otherwise, only
one Steiner point should be inserted.

154

Row-Based Global Routing

way utilization, the global router has been extended to handle FPGA freeways or

feedthroughs which span several rows. In addition, the algorithm has been augmented to

handle any number of pin maps, or versions of a cell instance - the program choosing the

version which minimizes area. After all feedthroughs have been added and chip width has

been determined, maze routing transforms the minimized Steiner trees to a minimum den-

sity solution. Finally, a unique vertical constraint loop minimization step breaks cycles in

the vertical constraint graph allowing the use of left edge algorithms for detailed channel

routing. Figure 7.2 show the overview of the global routing algorithm.

The input to the global router is a placement of row-based cells and a netlist which

describes the signal interconnects between cells. Optionally, a cell may have more than

one geometric view or version specified.

7.3.1 Region Generation

In the first step of the global routing algorithm, routing regions are defined. For each

routing region a density calculation is performed. Density is the maximum number of nets

crossing the width of a region. The routing regions are defined using the corner stitching

method of Magic [166]. The tiles are merged using a heuristic to form the largest tiles pos-

Algorithm Global-Router(placement, netlist)

1 Region-Generation()

2 Area-Minimization()

3 Assign-Multi-Row-Feedthrus()

4 Assign-Single-Row-Feedthrus()

5 Remove-Cell-Overlap()

6 Cell-Swap-Optimization()

7 Switchable-Segment-Optimization()

8 Maze-Route()

9 Vertical-Constraint-Loop-Minimization()

10 Route-Verification()

Figure 7.2 Algorithm Overview

155

Row-Based Global Routing

sible in an area. Routing regions may be arbitrarily shaped rectilinear figures as shown in

Figure 7.3. A routing region is defined as the set of tiles which encompasses the rectilinear

area. Each region has a capacity which is specified on a per tile basis. For row regions, the

capacity is fixed; it is zero for standard cell circuits and nonzero for sea-of-gates circuits.

For gate arrays, the channel region’s capacities are fixed.

7.3.2 Area Minimization

The area minimization step distinguishes this global router from its predecessors. This

is the first global router which explicitly minimizes chip area. Figure 7.4 shows the area

minimization algorithm. The loop in lines 1-2 seeks to generate a minimum rectilinear

Steiner tree for all nets. A minimum rectilinear Steiner tree (MRST) is defined as follows:

Given a set P of n signal pins, find an additional set S of Steiner points such that the mini-

mum spanning tree over has minimum cost. The cost of the MRST is the summa-

tion of the lengths of all the edges where the length of an edge is measured using the

Figure 7.3 The routing tiles for a mixed macro/standard cell design.

P S∪

156

Row-Based Global Routing

rectilinear or Manhattan metric. Both the SGGR [132] and iterated Steiner tree algorithms

[104] have been implemented. Lines 3 through 5 compute the initial height, width, and

timing penalty. The initial height is the sum of the heights of the routing regions plus the

row heights. The initial width is the length of the longest row counting any explicit

feedthroughs that need to be added. The timing penalty is computed as discussed in Chap-

ter 6. In line 6, the initial area is computed. The loop in lines 7-21 is a greedy algorithm

Algorithm Area-Minimization()

1 for to numnets do

2 = Build-Steiner-Tree(i, MINIMUM_WIRELENGTH)

3 compute

4 compute

5 compute

6

7 do
8

9 pick segment s of net n

10 if s crosses maximum density then
11 cost ← Flip-Segment()

12 else
13 if feed limited then
14 ← Build-Steiner-Tree(n, MINIMUM_FEEDS)

15 else if density limited then
16 ← Build-Steiner-Tree(n, MINIMUM_DENSITY)

17 else if Instance-Versions exists for net then
18 ← Swap-Instance-Versions(n)

19 else continue
20 cost ← Calculate-New-Cost()

21 if then
22 Accept-Move()

23

24 while cost improves

Figure 7.4 Area minimization algorithm

i 1←

Ti

H trackpitch tracksr heightb
b 1=

numrows

∑+⋅
r 1=

numregions

∑=

W max
b 1 numrows,{ }∈

lengthb feedwidth feedsb⋅+()=

PT

oldcost W H⋅ α PT⋅+←

n Random 1 numnets,()←

Tn

Tn

Ti{ }

cost oldcost≤

oldcost cost←

157

Row-Based Global Routing

which minimizes the chip area. A greedy algorithm suffices for area minimization since

there are many alternative states which allow the algorithm to escape from local minima.

Each iteration of the loop is as follows: First, a net is randomly selected. Next, a switch-

able segment of that net is picked. If that segment crosses the maximum density area of a

channel, change the switchable segment to another state and calculate the new area and

timing penalty. The possible switchable segment moves are shown in Figure 7.5.

 If the current segment does not cross a maximum density region, an attempt is made

to rebuild the Steiner tree for that net. Line 13 determines if the net contributes to an

explicit feedthrough in the longest row. If it does, any segments of this net connected to

feeds in the longest row are removed, and the Steiner tree for the net is locally rebuilt. By

changing the cost function for the Steiner algorithm, we can generate a Steiner tree which

minimizes the number of feeds crossing this row. Figure 7.6a shows an example of a

Steiner tree constructed to minimize feeds. Figure 7.7 shows an example of a Steiner

reconstruction move to reduce the width of the chip.

Figure 7.5 Switchable segment moves. Dashed lines indicate equivalent ports. Solid lines denote the
segment connecting two ports. States a, f, j, k, l are valid for row-based circuits where the row area is
a keep out area (gate-arrays and standard cells). States j, k, and l will require feedthrough insertion.
Additional states b, c, d, e, g, h, and i become valid when routing over the row is permissible (sea-of-
gates).

a) d) g)

c) f) i)

b) e) h)

j) k) l)

158

Row-Based Global Routing

If this net fails the test in line 13, it is then checked to see if it crosses any maximum

density regions (i.e. portions of a routing region in which the local density equals the den-

sity). Note that all segments are tested in line 15, but only switchable segments are

a) Minimize Feeds b) Minimize Wire length c) Minimize Density

Figure 7.6 Various Steiner trees for a 16 pin net. The Steiner tree may minimize feedthroughs, wire
length, or density.

159

Row-Based Global Routing

checked in line 10. If the net does cross a maximum density region, the Steiner tree for the

net is regenerated for minimum density as shown in Figure 7.6c.

If the test of line 15 fails, we then check to see if any cell instance connected to this net

has multiple cell versions. If such a cell exists, another version of the cell is selected. Fig-

ure 7.8 shows an example of a cell instance with multiple versions.

Figure 7.7 An example of a Steiner reconstruction move. a) the original minimum wire length Steiner
tree requires two feedthoughs, one in the longest row. b) net segments which cross the longest row are
removed. c) the reconstructed Steiner tree only needs one feedthough and none in the longest row.
Hence, the longest row has been shortened.

longest row

longest row

longest row

feeds needed

a)

b)

c)

feed needed

Version 2

A

Version 1

AB B A

Figure 7.8 Cell instance may have multiple versions. Each instance has a unique pinmap. The number
of ports may differ between pinmaps but the number of signals must remain constant.

160

Row-Based Global Routing

If at this point the global routing has been modified, the new cost is calculated in line

20. This move is accepted if the cost decreases; otherwise, the move is rejected. Looping

continues until the cost does not improve after O(switchable segments) moves. This same

method was proposed in the previous TimberWolfSC global routers.

7.3.3 Feedthrough Assignment - Multiple Row Assignment

Feedthrough assignment is broken into two stages: multiple row and single row. To

perform the assignment optimally, wire length and congestion must be considered for each

phase. We define a crossing to be a net segment that crosses one or more rows and requires

a feedthrough. A freeway is a feedthrough which spans multiple rows as shown in Figure

7.9. We define the cost for assigning a freeway i to a crossing j to be

(7.1)

where ,

, ,

defines the positions of the crossing and freeway segments, and

Freeway

Xj Yj(,)

xj yj(,)

Xi Yi(,)

xi yi(,)

Crossing

Figure 7.9 Definitions for multiple row feedthrough assignment. A multiple row feedthrough or
freeway is shown at the left and a crossing is shown on the right.

Cij Xi Xj– Yi yi–() min Yi Yj,() max yi yj,()–[]–{ } P1+ +=

fi x() xi Xi,[]= fi y() yi Yi,[]=

cj x() xj Xj,[]= cj y() yj Yj,[]=

161

Row-Based Global Routing

(7.2)

is the penalty due to congestion. The first term in the cost function minimizes the wire

length, and the second term (in braces) is the freeway utilization cost. The congestion pen-

alty is proportional to the change in density due to the addition of new horizontal segments

between the crossing and freeway ports. The constant K is chosen such that,

(7.3)

to ensure the penalty term receives the highest priority.

The multiple row feedthrough assignment algorithm is presented in Figure 7.10. The

loop in lines 2-12 is repeated until there are no more multiple row feedthroughs to assign.

In line 3, the core is partitioned into regions; one of which is picked to perform assign-

ment. Next, all the multiple row feedthroughs which intersect this region are found. In line

5, the number of crossings in this region are determined. If crossings do not exist, we go

on to the next region. If crossings exist, but there are no feedthroughs to assign, we issue a

nonfatal error message and continue with the next region. The assignment of these cross-

ings will be deferred to the single row feedthrough assignment stage. If the number of

P1 K ∆density⋅=

rowlength K«

Algorithm multi_row_feed_assignment()

1 work_to_do ← TRUE

2 do

3 {Regioni} ← Find-Available-MultiRowFeed()

4 num_free ← Find-Number-MultiRowFeeds({Regioni})

5 num_cross ← Find-Row-Crossings({Regioni})

6 if num_cross = 0 then break
7 if num_cross > 0 and num_free = 0 then error break
8 if num_cross > num_free then
9 Relax-Crossings({Regioni})

10 Linear-Assignment(C)

11 Update-Steiner-Trees()

12 while work_to_do

Figure 7.10 Multi row feedthrough assignment algorithm. This algorithm assigns both macro cell
feedthoughs and FPGA freeways.

162

Row-Based Global Routing

crossings is greater than the number of feedthroughs available in the region, we will relax

the crossings in the region. Each crossing in the region will be ranked based on length and

utilization of the freeway. In addition, a net will only be allowed to cross the region once;

all crossings are consolidated into a single crossing which minimizes the total deviation

from the original Steiner tree. In line 10, we use linear assignment to optimally assign the

feedthroughs with respect to the cost function presented in Equation 7.1. Afterwards, the

Steiner trees are updated to their new configuration.

7.3.4 Feedthrough Assignment - Single Row Assignment

The next stage of the global routing algorithm is the assignment of single row

feedthroughs. Figure 7.11 shows an example of a single row feedthrough. In this formula-

tion, we allow explicit feedthrough cells to contain multiple pairs of feedthrough ports.

The cost of assigning a freethrough i to a crossing j is

(7.4)

where (7.5)

(7.6)

(7.7)

(7.8)

(xi,yi) (xj,yj)

(Xi,Yi) (Xj,Yj)

Explicit Multiple Feed

Explicit Feed

Figure 7.11 Examples of a single row feedthrough. The feedthrough cell in the bottom row has
multiple feedthrough ports.

net crossing

Cij Xi Xj– P1 P2 P3+ + +=

P1 K ∆density⋅=

2

rowlength if explicit feed

0 otherwise

=

3

K if unused multifeed

0 otherwise

=

rowlength K«

163

Row-Based Global Routing

The first term in the cost function minimizes the wire length. In addition to the conges-

tion penalty, the cost function also contains two penalties to control the addition of explicit

feedthroughs. Penalty minimizes the number of explicit feedthroughs added. Penalty

 insures that all of the feedthrough ports of a multiple port feedthrough cell are used

before adding an additional feedthrough.

The algorithm for single row feedthrough assignment is presented in Figure 7.12. We

assign each of the rows in turn. In line 2, we find the available implicit feedthroughs in the

row. Next, we find the net segments which cross this row. If the number of required cross-

ings exceeds the number of implicit feeds available, we check to see if we are allowed to

add this many explicit feedthroughs in line 5. If the number of feedthroughs that we are

allowed to add in this row is less than the number we need to add (such as in a gate-array

design), we relax all Steiner trees which cross the row. These Steiner trees are converted to

Steiner trees requiring the minimum amount of feeds. In line 7, we add explicit

feedthroughs between cells. For each crossing intersecting a cell, we add an explicit

feedthrough at both ends of the cell. The cost function insures that the minimum number

of explicit feeds will actually be added. That is, unassigned explicit feeds will be deleted.

In the case that Relax-Steiner-Trees fails to reduce the number of crossings sufficiently,

P2

P3

Algorithm Feedthrough Assignment Phase II()

1 for to numrows do
2 avail ← Find-Available-Feeds(r)

3 need ← Find-Net-Crossings(r)

4 if avail < need then
5 if fixed-width then
6 Relax-Steiner-Trees(r, MINIMUM_FEEDS)

7 Add-Extra-Feeds-Between-Cells()

8 Eliminate-Overlapping-Crossings()

9 Linear-Assignment(C)

10 Update-Steiner-Trees()

Figure 7.12 Single row feedthrough assignment algorithm.

r 1←

164

Row-Based Global Routing

the global router will be able complete the routing, albeit infeasible. In line 8, overlapping

crossings, or crossings at the same x-coordinate, are untangled using a modified version of

Groeneveld’s wiring order algorithm [78]. Feedthrough assignment is then performed

optimally using linear assignment with the cost function of Equation 7.4. Afterwards, the

Steiner trees are updated to reflect the addition of the feedthroughs.

7.3.5 Cell Overlap Removal

If any explicit feedthroughs have been added to the design, we must remove any over-

lap created. Overlap removal is accomplished by sorting cells by their left edge. Ties are

broken using the Groeneveld ordering information. The sorted cells may then be placed

end to end as shown in Figure 7.13.

a)

b)

Figure 7.13 Removal of cell overlap. a) After explicit feeds have been added. b) After overlap has
been removed.

165

Row-Based Global Routing

7.3.6 Cell Swap Optimization

The next major step in the global routing algorithm is the cell swap optimization

phase. Two types of placement modifications are attempted: a pairwise interchange of

neighboring cells and an orientation change for a cell. The cost function is used to mini-

mize wire length and the timing penalty:

(7.9)

A placement modification is randomly selected; the new state is accepted if the cost is not

increased. The algorithm stops when further improvement appears unlikely. It has a major

impact on designs that require many explicit feedthroughs.

7.3.7 Switchable Segment Optimization

Next, the area minimization algorithm of Figure 7.4 is re-executed. Since the feed

positions are known, the chip width is fixed. The area minimization algorithm reduces to a

problem of optimizing track density under timing constraints. In addition, only states a

through i inclusive of Figure 7.5 are considered for swapping. This insures that wire

length, and hence the timing penalty, do not change during optimization. This step is anal-

ogous to similar steps performed in the previous TimberWolf global routers.

7.3.8 Maze Routing

The previous switchable segment optimization does not allow the Steiner tree to

exceed the bounding box of the ports of the net. Maze routing is used to transform the

minimized Steiner trees to a minimum density solution not necessarily constrained by the

bounding box. In order to perform maze routing efficiently, we define a graph

C Sx n() Sy n()+
n 1=

nets

∑ PT+=

where

Sxn
Syn

Steiner wire length,

PT timing penalty

G V E,()

166

Row-Based Global Routing

where the nodes V denote port locations, and the edges E are formed between adjacent

ports in the same region. An example of the maze graph construction step is shown in Fig-

ure 7.14.

Furthermore, we observe that the track count can only make transitions at the nodes of

the graph; hence, we store the density information at the nodes. We define a critical node

Figure 7.14 An example of the maze graph construction step for a small circuit. Figure a) shows the
port locations and b) displays the resulting graph.

A

B

167

Row-Based Global Routing

as a node which is within one track of the maximum density of the region:

(7.10)

Any new routing path that contains a critical node will either maintain or increase the

density. Our goal is to find an alternate path for a segment in a maximum density region

which does not contain any critical nodes.

In order to perform maze routing on the graph, the nets are projected onto the graph,

and the track count is summed at each node as shown in Figure 7.15a. Maze routing candi-

dates are those net segments which span a maximum density region and have at least one

port at a noncritical node. In the example of Figure 7.15a, nets 1 and 4 are valid candi-

ritical 0 if density node() maxdensity region() 1–<

1 otherwise

≡

Net 1 (to other regions)
Net 2

Net 3

Net 4
Net 3

Net 2

Net 1 (to other regions)

1 2 3 4 3 2

2 2 2 3 2 2

Project net segments onto graph

Legend:

Noncritical Edge - Critical Edge -

Noncritical Node Critical Node

1

Project net segments onto graph

2

Net 1

Figure 7.15 Example of incremental maze routing. a) Original routes for nets and their projection
onto the graph. The maximum density is 4. b) If we reroute net 1 using other regions, we reduce the
density to 3. It does not help to reroute nets 2 or 3 since their ports are at critical nodes. After reroute,
all ports are critical. Notice that if the new route does not contain any critical nodes, we are
guaranteed that the new route reduces the density by 1.

a)

b)

168

Row-Based Global Routing

dates.

Maze routing is performed using the algorithm presented in Figure 7.16. After the ini-

tialization (lines 1-3), the loop in lines 4-16 attempts to reduce the total density by rerout-

ing a segment that crosses the maximum density region. For each candidate segment, the

edge weights are initialized to an infinite cost so they cannot be part of the new route. In

line 9, maze routing is performed on the graph for the net segment candidate S. The cost

function which defines the weight of an edge e as

(7.11)

where n1 and n2 are the two nodes of the edge.

Algorithm Maze-Route()

1 Build-Maze()

2 Initialize-Maze() /* calculate initial maximum density regions */

3 /* S is the set of candidate segments */

4 do
5

6 while do
7 for do
8 for do /* for all edges which make up S */

9 /* set weight of edge to infinite cost */

10 /* maze route segment using dynamic cost function

11 if reduced = TRUE then
12 Update-Steiner-Trees()

13

14 if reduction = TRUE then
15

16 while reduction = TRUE and

Figure 7.16 Algorithm for incremental maze routing.

S{ } Find-Candidates()←

reduction FALSE←
S{ } { }≠
S S{ }∈

e S∈
w e[] ∞←

reduced Maze-Route S C,()←

reduction TRUE←

S{ } Find-Candidates()←
S { }≠

e[]
∞ if critical n1() or critical n2()

x1 x2– y1 y2–+ otherwise

=

169

Row-Based Global Routing

Observe that if the sum of the edge weights of a path is finite, a new route of shortest

length has been found which reduces the total density. If a new route is found, the Steiner

tree for the net is updated and the reduction flag is set. The outer loop continues until fur-

ther improvement is not possible. Figure 7.17 shows an example of incremental maze

routing.

7.3.9 Vertical Constraint Minimization

Another unique feature of this global router is vertical constraint loop minimization. If

a cycle exists in the vertical constraint graph, the resulting global routes cannot be detailed

routed using a left-edge algorithm (LEA) channel router. An LEA router must break the

cycle by ignoring a constraint that is a part of the cycle. The remaining net segments may

then be routed using the left edge algorithm, but the deleted constraint must be routed by a

special technique (usually maze routing) [179].

Figure 7.17 Maze route rip-up and reroute. The broken line is a segment that crosses the maximum
density region. The segment is removed and the net is reconnected using the new route on the left
which does not cross any maximum density regions. Hence, the total density has been reduced by
one. The rerouted segment extends beyond the minimum bounding box of the ports.

170

Row-Based Global Routing

The algorithm for minimizing vertical constraints is shown in Figure 7.4. The set of

cycles is initialized to the empty set in line 1. For each region, a vertical constraint graph is

constructed using the method described in Chapter 1. In line 4, any cycles found in the

region’s vertical constraint graph are added to the set of cycles. The initial cost is calcu-

lated in line 5. The loop from line 6 through 15 is a greedy algorithm which seeks to break

cycles in the vertical constraint graphs similar to the one used in area minimization.

Moves are accepted if they do not increase the total track density, and they break a cycle

without creating a new one. The loop continues until all cycles are broken or further

improvement appears unlikely.

7.3.10 Route Verification

The final step in global routing is a route verification stage. The route verification stage

Algorithm Vertical-Constraint-Minimization()

1 /* C is the set of cycles */

2 for to numregions do
3

4 /* find cycles in the vertical constraint graph */

5 /* calculate initial track density */

6 while
7

8 pick segment s of net n

9 if then /* check to see if segment s occurs in any cycle */

10 cost← Flip-Segment()

11 /* does the flip break the cycle */

12 if and broken = TRUE then
13 Accept-Move()

14

15

16 if cost does not improve for k moves break

Figure 7.18 Vertical constraint loop minimization algorithm

C { }←
r 1←
Gv Build-Vertical-Constraint-Graph r()←
C C FindCycles Gv r,()∪←

oldcost Initialize-Cost()←
C { }≠

n Random 1 numnets,()←

s C∈

broken Check-Cycle C s,()←
cost oldcost≤

oldcost cost←
C C Cs{ }–=

171

Row-Based Global Routing

uses a depth-first search of each Steiner tree to see if all the necessary ports are connected.

In addition, the search can detect cycles if they exist.

7.4 Algorithmic Complexity

Table 7.2 shows the time complexity for each step of the routing algorithm. Notice that

all steps of the algorithm have polynomial time complexity. In addition, all steps have lin-

ear space complexity. The most expensive operation is linear assignment with

time complexity. This can be reduced to by using divide-and-conquer techniques if

suboptimal solutions are permissible.

Table 7.2 Algorithmic Complexity

Legend: C = number of cells, E = number of edges in maze graph, F = number of

feedthroughs in a single row/region, N = number of nets, P = max. number of pins of a sin-

gle net, R = number of regions, S = number of net segments, V = number of vertices in the

maze graph.

Step Time Complexity Space Complexity

Region-Generation O(R2) O(R)

Area-Minimization O(NS) O(P)

Assignment I O(F3) O(F)

Assignment II O(F3) O(F)

Remove-Cell-Overlap O(ClogC) O(C)

Cell-Swap-Optimization O(C) O(C)

Switchable-Segment-Opt O(NS) O(P)

Maze-Route O(P[logV + E]) O(E+V)

Vertical-Constraint-Min. O(NS) O(P)

Route-Verification O(V+E) O(P)

O F3()

O F()

172

Row-Based Global Routing

7.5 Sea-of-Gates Extensions

This global router has been extended to handle sea-of-gates arrays. In the sea-of-gates

design style, routing is performed in the same area as the rows of transistors. If there is not

enough area to complete the routing in a region, an entire row of transistors may be left

unconnected. Since the cell level routing is eliminated when the transistors are left unused,

more resources are available to complete the routing. However, this increases the area of

the chip dramatically - just one additional routing track over the capacity of the row area

causes another entire row to be allocated for routing.

In order to minimize the number of partially-filled rows, two modifications must be

made. First, the height of the chip (line 3 of Figure 7.4) must be redefined to sum integral

multiples of the row height in each region as

(7.12)

where

(7.13)

for a region r.

Secondly, a penalty term is incorporated to create a gradient for the case of states

which have the same area. In Equation 7.14, a single track over the capacity of the

(7.14)

row region has the greatest penalty. This minimizes the number of partially-filled rows.

H trackheight r()
rowheight r()

-- rowheight r()⋅
r 1=

numregions

∑=

trackheight r() trackpitch tracks r()⋅=

sog

0 if trackheight r() mod rowheight r() 0=

trackheight r() mod rowheight r() rowheight r()–() 2 otherwise
{=

173

Row-Based Global Routing

7.6 Row-based FPGA Extensions

In order to handle row-base field programmable gate arrays, the global router has been

augmented to understand FPGA freeway maps. A freeway map is shown in Figure 7.19.

The multiple row feedthrough assignment step comprehends feedthroughs which have

more than two ports. In the case of an FPGA freeway, a port exists in every region that it

intersects. The global router has also been modified so that output ports may span multiple

rows.

In addition, the various FPGA pin-maps for a cell instance are optimized during area

minimization through the use of instance version moves. An example of a Steiner tree for

Figure 7.19 Example of freeway map.

174

Row-Based Global Routing

an FPGA circuit is shown in Figure 7.20.

7.7 Results

In order to determine the effectiveness of the global router for different technologies,

we performed two experiments. In the first experiment, all implicit feeds were removed

from the benchmark circuits. In the second, the implicit feeds were left in place. We com-

pared the global routing results for the same placement in all cases.

Table 7.3 presents the results for the MCNC benchmark circuits where implicit

feedthroughs were removed. The SGGR global router could not be compared because it

cannot add explicit feeds. The version 6.0 global router outperformed all other global rout-

ers on the set of MCNC benchmark circuits requiring the insertion of feedthrough cells. In

all cases, the new global router outperformed the previous version. Both the number of

tracks and area were reduced.

Figure 7.20 Example of a Steiner tree for a FPGA. Solid lines are freeways. Dashed line is a multiple
row output pin.

175

Row-Based Global Routing

Table 7.3 Results for the MCNC benchmarks - Explicit feeds case.

In the second case, (Table 7.4) the implicit feedthroughs in the circuits were utilized.

In all cases, additional explicit feedthroughs were not necessary. Hence, the width of the

design is fixed, and the track density determines the area of the design. Previously, SGGR

produced the best results ever reported for the MCNC benchmark circuits. For every cir-

cuit, TimberWolfSC version 7.0 outperforms all other global routers.

Notice from Table 7.5 that the new global router uses much less total wire length com-

pared to SGGR. The latter program is based on maze routing and hence is not suitable for

performance driven global routing.

Circuit TimberWolfSC version 6.0 TimberWolfSC version 7.0

width tracks area width tracks area

sp1 5210 163 5200 160

sp2 11730 401 11600 374

guts 8344 1817 8300 1734

Table 7.4 Results for the MCNC benchmarks. Track count for implicit feeds case.

Circuit TimberWolfSC 6.0 SGGR TimberWolfSC 7.0

avg min max avg min max avg min max

small 60 51 65 55 53 59 49 47 51

primary1 150 142 167 141 140 141 141 140 143

primary2 386 368 407 346 342 352 340 338 344

2.18
7×10 2.16

7×10

8.76
7×10 8.34

7×10

5.76
7×10 5.59

7×10

176

Row-Based Global Routing

7.8 Conclusions

We have presented a new generalized row-based global router suitable for standard

cell, gate-array, sea-of-gates, and FPGA integrated circuits. It is the first row based global

router to explicitly minimize chip area. The global router uses adaptive Steiner trees to

minimize chip area. Results were vastly improved over typical minimum wire length

Steiner trees. This global router automatically adapts to technologies. In addition, optimal

feedthrough placement is accomplished using linear assignment. Throughout the algo-

rithm, timing constraints are taken into account. Furthermore, a unique vertical constraint

loop minimization step eases the task for LEA channel routers. Finally, it has been shown

that this global router outperforms other global routers for all the MCNC benchmark cir-

cuits which were tested.

Table 7.5 Results for the MCNC benchmarks. Wire length comparison for implicit feeds case.

Circuit SGGR TimberWolfSC 7.0

avg min max avg min max

small 109719 109082 111474 95501 94280 96810

primary1 801217 794165 811950 736283 735290 737600

primary2 4257644 4234530 4276180 4007742 3987810 4017180

